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ABSTRACT

A technique for profiling of C2
n over an atmospheric propagation path is proposed, developed and analyzed.

The technique employs differential-tilt measurements to arrive at statistics which have unique weighting
functions over the propagation path. These weighting functions are computed theoretically and used to
derive a reconstructor matrix for C2

n values throughout the path to be applied to an appropriate set of
differential-tilt statistics. A candidate optical system is presented, and the performance of the profile recon-
structor is analyzed. This study indicates that the relative error in the C2

n estimates is approximately 5%.
The relative error in estimating key atmospheric parameters such as the Fried parameter, isoplanatic angle,
and the Rytov parameter from the reconstructed profiles is approximately 3%. The noise gain for estimating
atmospheric parameters is less than 0.2 for all parameters considered.

Keywords: differential tilt, turbulence profiling, atmospheric characterization

1 INTRODUCTION

Compensation of atmospheric turbulence using adaptive-optics (AO) technology holds great promise for
improving resolution of ground-based telescopes [1] and for improving target-plane energy density in laser
weapon applications such as the Airborne Laser (ABL) [2, 3]. Optical resolution through the atmosphere
with no compensation is governed by the relative aperture D/r0, where D is the aperture diameter and r0 is
the atmospheric coherence diameter or Fried parameter [4]. Closed-loop performance of an AO system also
depends upon D/r0, but can be affected by turbulence characteristics such as the Rytov parameter (R) [5]
and isoplanatic angle (θ0) [6]. The quantity D/r0 indicates effects on the closed-loop system due to near-field
turbulence, R indicates effects due to mid-path turbulence, and θ0 indicates the effects of turbulence in the
far-field. In general, it is necessary to know C2

n values along the propagation path at least at course resolution
(or a sufficient set of atmospheric parameters) to assess closed-loop system performance [3].

Measurement of C2
n along a propagation path or as a function of altitude is often referred to as “turbulence

profiling.” Turbulence profiling is often conducted for the purpose of studying atmospheric phenomenology.
In this case, high resolution profiles are required in order to address relevant phenomena. These types of
studies have been effectively carried out using a profiling radar [7, 8, 9]. High-resolution studies have also
been made using anemometry devices [2]. Integrated-turbulence profiling techniques are used when radar or
in-situ techniques are impractical. In contrast to the radar or in-situ methods, integrated-turbulence profiling
measurements tend to be low resolution. An example of this type of profiling is the Scintillation Detection
and Ranging (SCIDAR) technique [10, 11]. A related technique for low-resolution profiling using pupil-
plane irradiance imagery has also been proposed and tested by Holmes [3]. These low-resolution profiling



techniques are ideally suited for AO performance evaluation by use of theoretical analysis or wave-optics
simulation.

In this paper, we introduce a new class of integrated-turbulence profiling techniques suitable for closed-
loop AO performance analysis. The specific technique we discuss is built on a process known as the difference
of differential-tilt variance (DDTV). The DDTV technique has many desirable properties, and has been
shown to be effective for challenging atmospheric characterization problems [12]. Like the irradiance-based
techniques discussed above, this technique produces relatively low resolution C2

n profiles as compared with
radar or in-situ techniques. Unlike the irradiance-based techniques, this technique relies on phase-related
quantities. Since differential-tilt measurements are phase-related, conventional propagation theory may be
employed for analysis purposes even for strong extended-turbulence atmospheric paths. In this scenario,
the variance of irradiance saturates (also called the saturation regime [13]) and there is no valid theoretical
construct for treating irradiance statistics (i.e. variance, covariance). Thus, irradiance-based techniques are
of limited utility in the saturation regime and not generally suitable for profiling over long nearly-horizontal
paths with strong turbulence.

The technique we propose requires having a 2 receive apertures and an accompanying focal-plane camera
on one end of the propagation path and 3 point source beacons on the other end of the path. Each aperture
receives light from each of the point sources, leading to spot centroid measurements on the focal plane
which form the fundamental data for the technique. An ensemble of fundamental data is collected, and
then processed to form a collection of DDTV quantities. The particular DDTV quantities are selected a
priori based on the uniqueness of their associated theoretical path-weighting function. For a given set of
DDTV quantities determined from the data, a profile reconstructor matrix can be computed using theoretical
analysis. When applied to the DDTV quantities, the output is a vector of C2

n values over the propagation
path. Thus, the profile reconstructor is a linear operator on measurements made with the proposed apparatus.

The remainder of this paper is structured as follows. In Section 2, we discuss the theory and analysis
supporting the differential-tilt profiling technique. Properties of the DDTV quantities are discussed, the-
oretical expressions for the associated path weighting functions are developed, and the form of the profile
reconstructor matrix is derived. In Section 3 we give an example of how to determine the applicable set of
DDTV quantities for a simple system configuration. We then present the results of performance testing for
the proposed apparatus, demonstrating that this system provides an accurate and practical device for the
C2

n profiling application. We draw conclusions in Section 4.

2 THEORY AND ANALYSIS

2.1 Properties of DDTV Measurements

To begin the analysis supporting this turbulence-profiling technique, we will first discuss the properties of
a measurement process known as the difference of differential-tilt variance (DDTV), a technique introduced
in Reference [12]. This process requires the measurement of two separate differential-tilt variances. We
shall refer to these two differential-tilt variances as the primary and secondary variances. For each type of
differential-tilt variance, there are fundamental measurements associated with each of two apertures, which
we refer to as aperture 1 and aperture 2. The fundamental measurements are centroids obtained on the focal
plane associated with the two apertures. Aperture 1 and aperture 2 are in general separated physically, and
are used to observe either a single point source or two individual point sources.

In this analysis, we designate the fundamental measurements associated with the two apertures for
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the primary differential-tilt variance as d1p and d2p. Likewise, the fundamental measurements associated
with the two apertures for the secondary differential-tilt variance are designated d1s and d2s. Using these
measurements, the DDTV is designated σ2

δ , and defined explicitly as:

σ2
δ ≡ 〈(d1p − d2p)2

〉− 〈(d1s − d2s)2
〉
, (1)

where 〈·〉 indicates the statistical expectation operation over an ensemble of turbulence realizations (a time
history for ergodic turbulence assumptions). In the definition of Eq. (1), we have implicitly assumed that
〈d1p〉 = 〈d2p〉 and 〈d1s〉 = 〈d2s〉. Thus, any bias between the mean tilt of aperture 1 and the mean tilt of
aperture 2 must be subtracted before applying Eq. (1) directly. It is worth noting here that Eq. (1) is a
scalar equation to be applied to each component of the measured tilt vector. The analysis which follows will
be carried out in a single axis of tilt parallel to the direction of the aperture separation vector.

The primary benefits of the DDTV technique are twofold. First, the DDTV technique is insensitive
to contamination due to gimbal motion, a feature of all differential-tilt techniques [14, 15, 16]. Secondly,
additive noise contributions to the differential-tilt variances are inherently canceled in the DDTV technique.
To substantiate these claims, we consider a measurement model for tilt data from each aperture. In this
measurement model, we express each tilt measurement as the sum three components; atmospheric, noise,
and gimbal motion. Accordingly, the tilt data from each aperture is given by:

d1p = t1p + n1p + θp,
d2p = t2p + n2p + θp,
d1s = t1s + n1s + θs,
d2s = t2s + n2s + θs. (2)

In Eq. (2), t1p, t2p and t1s, t2s represent atmospheric tilt components of the measured data (in units of λ/D)
from each aperture for primary and secondary differential-tilt statistics. Also, n1p, n1s and n2p, n2s represent
the detector-noise-induced angle corresponding to each fundamental measurement. The contribution of
gimbal motion to the measured tilt on each aperture is given by θp and θs, indicating that aperture 1 and
aperture 2 are mounted on the same gimbal (gimbal motion contributes the same tilt to each aperture).

From the definition of σ2
δ in Eq. (1) and the model for the tilt data given in Eq. (2) it follows that:

σ2
δ =

〈
(t1p − t2p + n1p − n2p)2

〉− 〈(t1s − t2s + n1s − n2s)2
〉

=
〈
t21p

〉
+
〈
t22p

〉− 2 〈t1pt2p〉+
〈
n2

1p

〉
+
〈
n2

2p

〉− 2 〈n1pn2p〉
− 〈t21s

〉− 〈t22s

〉
+ 2 〈t1st2s〉 −

〈
n2

1s

〉− 〈n2
2s

〉
+ 2 〈n1sn2s〉

= 2 (〈t1st2s〉 − 〈t1pt2p〉) . (3)

In the steps leading up to Eq. (3), the noise variances and covariances are assumed to be equal for the
primary and secondary measurements. We also assume that n1p, n2p are uncorrelated with t1p, t2p and n1s,
n2s are uncorrelated with t1s, t2s. The gimbal-motion contributions are canceled by the differencing of the
tilt measurements for the common-gimbal apertures. Furthermore, the atmospheric tilt variances as well
as the noise variances and covariances are canceled by the differencing of the differential-tilt variances. All
that remains in the expression for σ2

δ is the difference of atmospheric tilt covariances for the primary and
secondary propagation geometries.

2.2 Path-Weighting Functions for DDTV Measurements

According to Eq. (3), σ2
δ represents twice the difference of tilt covariance between the two apertures for the

primary and secondary propagation geometries. To derive a path-weighting function for σ2
δ , we must first
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Figure 1: Analysis geometry for calculating the tilt covariance between apertures separated by a distance d
in the x̂ direction for point sources separated by a distance b in the x̂ direction.

consider the relation between the tilt covariance and turbulence parameters for an arbitrary configuration of
apertures and sources. This calculation has been performed previously for Zernike coefficients of arbitrary
order, with arbitrarily-positioned apertures and sources [17, 18, 19]. To employ the results of these analyses
here, we consider the geometry shown in Figure 1. This figure shows two apertures separated by a distance
d in the x̂ direction. These apertures receive light from two point sources separated by a distance b in
the x̂ direction. This geometry is general enough to model all possible differential-tilt configurations. The
distances d and b may be set to zero when considering differential tilts with coincident (the same) apertures
or sources.

For two apertures (diameter D) separated in the x̂ direction assuming a finite outer scale for turbulence
L0, the covariance of the Zernike x-tilt coefficients for the two apertures, designated a1 and a2 is given
by [17]:

〈a1a2〉 = 21/3
√
3 Γ(8/3)

(
2π
λ

)2

D5/3

∫ L

0

dz C2
n(z)(1− z/L)−2

×
∫ ∞

0

dx
x
(x2 + x2

0)
−11/6J2

2 [(1− z/L)x]
{
J0

[
2s(z)
D
x

]
− J2

[
2s(z)
D
x

]}
, (4)

where λ is the wavelength, L is the propagation distance, C2
n is the index of refraction structure constant,

x0 = πD/L0, and s(z) is the magnitude of �s(z) shown in Figure 1:

�s(z) = (1− z/L)(�ra2 − �ra1) + (z/L)(�rs2 − �rs1), (5)
s(z) = d(1 − z/L) + b(z/L). (6)

Notice that since the aperture and source separations are in the x̂ direction, �s(z) is always parallel to x̂. As
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defined, the Zernike tilt coefficient a is related to an angular tilt t (in units of λ/D) by a = (2/π)t.

The physical configurations we wish to consider involve small separations of the apertures and sources.
In these cases, outer scale effects will be negligible. Thus, for x0 → 0, Eq. (4) may be written as:

〈a1a2〉 = 16
√
3Γ(8/3)

(
2π
λ

)2

D5/3L

∫ 1

0

dξ C2
n(ξL)

[α(ξ)]11/3

(1− ξ)−2

∫ ∞

0

dγ
γ
γ−11/3J2

2 [β(ξ)γ]
{
J0(γ)−J2(γ)

}
, (7)

where ξ = z/L and α(ξ), β(ξ) are dimensionless parameters given by:

α(ξ) =
s(ξ)
D
, (8)

β(ξ) =
1− ξ
2α(ξ)

. (9)

From Eq. (6) and Eq. (8) we note that 〈a1a2〉 for a given C2
n(z) depends only upon the normalized aperture

separation d/D and the normalized source separation b/D. If we treat all factors multiplying C2
n within the

integral over ξ as a weighting function W (ξ), then Eq. (7) may be rewritten as:

〈a1a2〉 = 16
√
3 Γ(8/3)

(
2π
λ

)2

D5/3L

∫ 1

0

dξ C2
n(ξL) W (ξ), (10)

where W (ξ) is defined as:

W (ξ) ≡ [α(ξ)]11/3

(1 − ξ)−2

∫ ∞

0

dγ
γ
γ−11/3J2

2 [β(ξ)γ]
{
J0(γ)− J2(γ)

}
. (11)

The integral over γ may be evaluated in closed form. The value of the integral depends upon the value of
the parameter β(ξ) as follows:

For [β(ξ)]2 < 1/4:

W (ξ) = 2−14/3(1 − ξ)5/3




2−17/3[β(ξ)]1/3Γ(1/6)
Γ(5/6) 3F2

{
1/6, 1/6, 5/2; 3, 5; [2β(ξ)]2

}

−2−17/3[β(ξ)]1/3 Γ(7/6)
Γ(11/6) 3F2

{−5/6, 7/6, 5/2; 3, 5; [2β(ξ)]2}


 (12)

For [β(ξ)]2 ≥ 1/4:

W (ξ) = 2−14/3(1 − ξ)5/3




Γ(1/6)Γ(7/3) 3F2

{−23/6, 11/6, 1/6;−4/3, 1; [2β(ξ)]−2
}

√
πΓ(17/6)Γ(29/6)

+
Γ(−7/3) 3F2

{−3/2, 1/2, 5/2; 10/3, 10/3; [2β(ξ)]−2
}

214/3πΓ(10/3)[β(ξ)]14/3

−Γ(7/6)Γ(4/3) 3F2

{−17/6,−5/6, 7/6;−1/3, 3; [2β(ξ)]−2
}

23
√
πΓ(11/6)Γ(23/6)[β(ξ)]2

−Γ(−4/3) 3F2

{−3/2, 1/2, 5/2; 7/3, 13/3; [2β(ξ)]−2
}

214/3πΓ(13/3)[β(ξ)]14/3




(13)
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Throughout the remainder of this paper, we will investigate weighting functions of C2
n corresponding

to different optical configurations. To facilitate our discussion, we have chosen to work with normalized
weighting functions, that is, weighting functions whose integral value over the propagation path is 1. In
normalized form, Eq. (10) is written as:

〈a1a2〉 = 16
√
3 Γ(8/3)

(
2π
λ

)2

D5/3LW0

∫ 1

0

dξ C2
n(ξL) w(ξ), (14)

where

w(ξ) =
W (ξ)
W0

, (15)

W0 ≡
∫ 1

0

dξ W (ξ). (16)

When normalized in this fashion, w(ξ) in Eq. (14) is analogous to a probability density for the tilt covariance
over the propagation path. The integral of w(ξ) over some interval ∆ξ gives the probability that the
turbulence strength within ∆ξ contributes to the tilt covariance.

Recall from Eq. (3) that σ2
δ is given as 2 times the difference of the tilt covariances for the primary and

secondary propagation geometries. Using Eq. (14), we see that σ2
δ is given by:

σ2
δ = 2 (〈t1st2s〉 − 〈t1pt2p〉)

=
8
π2

(〈a1sa2s〉 − 〈a1pa2p〉)

=
128

√
3 Γ(8/3)
π2

(
2π
λ

)2

D5/3L

∫ 1

0

dξ C2
n(ξL) [W0sws(ξ) −W0pwp(ξ)]

=
128

√
3 Γ(8/3)
π2

(
2π
λ

)2

D5/3L (W0s −W0p)
∫ 1

0

dξ C2
n(ξL) wδ(ξ), (17)

where W0s, ws(ξ) and W0p, wp(ξ) are the normalization constant and normalized weighting function for the
secondary and primary geometries, respectively. The factor of 4/π2 arising in the second step represents a
conversion of Zernike-tilt variance in units of rad2 to angular variance in units of (λ/D)2. Notice that the
weighting function for the difference of the tilt covariances is the difference of the weighting functions of each
covariance. In Eq. (17), we have chosen to normalize the weighting function for σ2

δ as follows:

wδ(ξ) ≡ W0sws(ξ)−W0pwp(ξ)∫ 1

0 dξ W0sws(ξ) −W0pwp(ξ)

=
W0sws(ξ)−W0pwp(ξ)

W0s

∫ 1

0
dξ ws(ξ)−W0p

∫ 1

0
dξ wp(ξ)

=
W0sws(ξ)−W0pwp(ξ)

W0s −W0p
, (18)

where the last step in the equation above follows from the fact that ws and wp are normalized.

2.3 Derivation of the Turbulence-Profile Reconstructor

The main result to be taken from Subsection 2.2 is that any DDTV statistic generated using an arbitrary
array of apertures with an arbitrary array of point sources can be expressed as a weighted integral of C2

n(z).
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Furthermore, DDTV path weighting functions can be evaluated in closed-form given the normalized aperture
separation and the normalized source separation for the primary and secondary configurations. For a given
array of apertures and point sources, suppose we considerM -DDTV measurements indexed by the subscript
k. For each DDTV measurement, from Eq. (17) we know that for k = 1, 2, . . . ,M :

σ2
δ k =

128
√
3 Γ(8/3)
π2

(
2π
λ

)2

D5/3LW0k

∫ 1

0

dξ C2
n(ξL) wδk(ξ), (19)

where wδk(ξ) is the normalized path-weighting function for σ2
δ k and W0k = (W0s −W0p)k. From Eq. (19)

we may say that:

mk =
∫ 1

0

dξ C2
n(ξL) wδk(ξ), (20)

where mk is the kth normalized DDTV measurement given by:

mk =
σ2

δ k

128
√

3 Γ(8/3)
π2

(
2π
λ

)2
D5/3LW0k

. (21)

Now, suppose that C2
n(ξL) is well modeled by N partitions of nearly-uniform turbulence strength such that:

C2
n(ξL) =

N∑
i=1

C2
ni rect

(
ξ − ξi
li

)
, (22)

where C2
ni is the uniform turbulence strength over partition i, ξi is the normalized position of the center

of the of the ith partition of normalized width li (i.e.,
∑N

i=1 li = 1). With the model for C2
n(z) given in

Eq. (22), we may use Eq. (20) to write:

mk =
∫ 1

0

dξ
N∑

i=1

C2
ni rect

(
ξ − ξi
li

)
wδk(ξ)

=
N∑

i=1

C2
ni

∫ 1

0

dξ rect
(
ξ − ξi
li

)
wδk(ξ)

=
N∑

i=1

C2
ni

∫ ξi+li/2

ξi−li/2

dξ wδk(ξ)

=
N∑

i=1

C2
ni pki, (23)

where pki is integral of the kth weighting function over the ith path partition:

pki =
∫ ξi+li/2

ξi−li/2

dξ wδk(ξ). (24)

At this point, we recognize that Eq. (23) represents a system of M equations with N unknowns which may
be written compactly in vector-matrix form using the following notation:

m =



m1

m2

...
mM


 P =



p11 p12 · · · p1N

p21 p22
...

...
. . .

...
pM1 · · · · · · pMN


 c =



C2

n1

C2
n2
...
C2

nN


 . (25)
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Thus, the system of equations specified in Eq. (23) may be rewritten as:

m = Pc. (26)

Eq. (26) expresses the transformation of a set of C2
n values over the propagation path (a turbulence profile)

to the normalized DDTV measurements each of which should represent a unique moment of the turbulence
profile.

The goal of any turbulence profiling technique is a problem inverse to the set of equations indicated in
Eq. (26); that is, given a set of normalized DDTV measurements, determine the vector of C2

n values from
which those measurements were derived. If P were an invertible matrix, then the solution to Eq. (26) would
be c = P−1m. However, P is generally not invertible, and we instead seek an optimal solution for Eq. (26).
The least-squares estimate ĉ for c is a common optimal solution [20] given by:

ĉ = Hm, (27)

where H is the well-known pseudo-inverse [21] of P given by:

H = (PT P)−1PT . (28)

We will refer to H as the turbulence profile “reconstructor.” Given a set of M normalized DDTV measure-
ments, H will be used to reconstruct N partitions of C2

n over the propagation path. The profile reconstructor
is computed directly from the P matrix, whose elements are derived by integrating the analytic weighting
functions of the appropriate DDTV measurements over the desired path partitions.

3 RESULTS

Section 2 and its constituent subsections provide the full theoretical structure required for developing and
analyzing a turbulence profiling technique using the DDTV method. For a given set of apertures and point
sources, the weighting functions for DDTV statistics under consideration can be calculated and integrated
properly to derive a reconstructor matrix for C2

n over a set of path partitions. In this section, we provide a
simple example of how to determine the set of DDTV statistics to be included in the measurement vector. We
also consider a practical profiling apparatus and assess its performance against random turbulence profiles.

3.1 Determining the DDTV Measurement Set: An Example

We now provide an example of how to determine the set of DDTV statistics to be included in the measurement
vector for the profile reconstructor. The example is given for a simple array of apertures and point sources,
but the methodology presented can be applied to more complex configurations to arrive at an applicable
profile reconstructor. The logic described here has been implemented in computer code and applied to
develop the turbulence profiler described in Subsection 3.2.

In particular, we will consider the unique DDTV statistics arising from an apparatus comprised of two
apertures located at x = 0, 1 and z = 0. These apertures receive light from two point sources located at
x = 0, 1 and z = L. Each aperture receives light from each point source. Thus, a centroid calculation can
be made on the focal plane associated with each aperture from each point source. The matrix on the left-
hand side of Table 1 shows the fundamental data elements (centroids) derived from the 2-aperture/2-source
system. The matrix on the right-hand side of Table 1 shows the unique differential-tilt variances that can
be computed using these fundamental data elements.
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source location
aperture location 0 1

0 d00 d01
1 d10 d11

d00 d01 d10 d11

d00 ****
〈
(d00 − d01)2

〉 〈
(d00 − d10)2

〉 〈
(d00 − d11)2

〉
d01 **** ****

〈
(d01 − d10)2

〉 〈
(d01 − d11)2

〉
d10 **** **** ****

〈
(d10 − d11)2

〉
d11 **** **** **** ****

Table 1: Data specification for unique differential-tilt variances using apertures located at x = 0, 1 and point
sources located at x = 0, 1. Each fundamental data element is generated by each aperture receiving light
from each point source (left). Diagonal elements for the matrix of differential-tilt variances (right) using
these fundamental data elements are 0. Matrix elements to the left of the diagonal are the same as the
elements to the right of the diagonal.

While each of the differential-tilt variances shown in Table 1 are unique, not all will result in unique
contributions to the weighting functions associated with DDTV statistics. Remember that the DDTV path
weighting is the difference of tilt covariance path weighting functions. The tilt covariance weighting functions
are determined by the normalized aperture separation d/D and the normalized source separation b/D. By
examining the value of these parameters for each of the differential-tilt variances indicated in Table 1, we can
determine which of these are worthy of further consideration. This process is shown graphically in Figure 2.
These diagrams show the optical propagation geometry for each of the 6 differential-tilt variances indicated
in Table 1 (ordering each by going across the rows). Notice that configurations 5 and 6 have the same set of
aperture and source separation parameters as configurations 2 and 1, respectively.

DDTV designation specification
σ2

δ 1

〈
(d00 − d01)2

〉− 〈(d00 − d10)2〉
σ2

δ 2

〈
(d00 − d01)2

〉− 〈(d00 − d11)2〉
σ2

δ 3

〈
(d00 − d01)2

〉− 〈(d01 − d10)2〉
σ2

δ 4

〈
(d00 − d10)2

〉− 〈(d00 − d11)2〉
σ2

δ 5

〈
(d00 − d10)2

〉− 〈(d01 − d10)2〉
σ2

δ 6

〈
(d00 − d11)2

〉− 〈(d01 − d10)2〉
Table 2: Specification for the 6 DDTV statistics resulting in unique path-weighting functions from an
apparatus with apertures located at x = 0, 1; z = 0 and sources located at x = 0, 1; z = L

Eliminating the two configurations giving duplicate covariance weighting, there are 4 differential-tilt
variances which can be used to form DDTV measurements with unique path-weighting functions. The
specification for each of the 6 such DDTV statistics is given in Table 2. These path weighting functions
(properly normalized) are depicted in Figure 3. These plots indicate that even for a modest array of apertures
and point sources, the unique DDTV statistics which result have path weighting functions with vastly
different characteristics. Some give more weighting to the aperture-end of the path, while others accentuate
the mid-path. These plots also indicate that none of the DDTV measurements are well-weighted at the
source-end of the path. This is a inherent characteristic of differential-tilt measurements from point sources.

To obtain reliable profiling of turbulence strength near z = L, we will consider using a bi-directional
system. To create such a system, apparatus at either end of the path is duplicated on the other. For the
example given in this subsection, this results in a set of DDTV weighting functions similar to those shown
in Figure 3, but flipped left-to-right. For a bi-directional system with M -DDTV measurements coming from
each end of the path, the measurement vector has 2M elements, and the associated weighting functions for
k > M are given by:

wδk(ξ) = wδk−M (1− ξ). (29)
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same as 2 same as 1

Figure 2: Collection of all possible differential-tilt variance configurations obtained with apertures located
at x = 0, 1 and point sources located at x = 0, 1. Two configurations do not yield unique tilt-covariance
weighting functions.

3.2 Performance of the Proposed Profiling Apparatus

Having detailed the process of determining DDTV statistics to be included in the measurement vector for a
simple optical configuration, we now consider a practical apparatus for turbulence profiling. This apparatus
is considered to be “practical” in the sense that it requires a modest investment in hardware and exhibits
desirable reconstructor performance. The proposed optical configuration is shown in Figure 4. As this
diagram indicates, the proposed configuration features 2 apertures at z = 0 and 3 point sources at the other
end of the path (z = L). The system is bi-directional, so similar hardware is located on either end of the
propagation path. The system aperture centers are separated by D, and the point source separations are
D and 2D. By spacing the point sources unevenly, we are allowing for a greater number of unique DDTV
statistics to be generated by the configuration.

Following the line of reasoning outlined in Subsection 3.1, it was determined that each end of the system
shown in Figure 4 yields 45 DDTV measurements, each of which have a unique weighting function. Thus,
the number of elements in the measurement vector is 90 for the bi-directional system. To compute the
transformation matrix P, we assumed a turbulence profile with 10 partitions, resulting in a P matrix which
is of size 90x10. The reconstructor matrix H was computed from P using Eq. (28). To test this reconstructor,
random turbulence profiles were generated with 10 partitions across the path. The C2

n values over the 10
partitions were computed according to:

C2
ni = C0 exp(xi), (30)

where xi are random numbers drawn from a normal distribution with 0 mean and unit variance (C2
ni values

are log-normal). The constant C0 was set to 5.0× 10−17 m−2/3.

An ensemble of 1,000 random turbulence profiles was generated, and the appropriate moments of each
distribution were computed to form the measurement vector m. The turbulence profile estimate vector ĉ was
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Figure 3: Path-weighting functions for the 6 DDTV measurements indicated in Table 2. Legend represents
coded specification of DDTV measurement, e.g. “0001 // 0010” represents

〈
(d00 − d01)2

〉− 〈(d00 − d10)2〉

computed for each of the random profiles by applying the reconstructor matrix H to m according to Eq. (27).
A sampling of the reconstruction results for the ensemble of turbulence profiles is shown in Figure 5(a). The
relative error for the ensemble of reconstructed profiles is shown in Figure 5(b). This plots illustrates that
the relative error in the reconstructed profile is generally quite small over most of the propagation path. The
mean relative error is approximately 5%, whereas the median relative error is approximately 3%. Even the
relative error for 85% of the distribution is less than 10% over the entire propagation path.

While the relative error characteristics shown in Figure 5(b) indicate that the proposed turbulence profiler
will perform quite well, it is perhaps more instructive to consider how well the reconstructed profiles can
be employed to determine key atmospheric parameters. Estimates of key atmospheric parameters like the
Rytov parameter (R), Fried parameter (r0), isoplanatic angle (θ0) may be used together to assess how well an
adaptive-optics system might perform [3]. Using the ensemble of 1,000 random profiles and the reconstruction
results associated with each of these profiles, the following atmospheric parameters were computed:

Rytov parameter: R = 0.5631
(
2π
λ

)7/6

L11/6

∫ 1

0

dξ C2
n(ξL) [ξ(1− ξ)]5/6 (31)

Fried parameter: r0 =

[
2.91
6.88

(
2π
λ

)2

L

∫ 1

0

dξ C2
n(ξL) (1− ξ)5/3

]−3/5

(32)

isoplanatic angle: θ0 =

[
2.91

(
2π
λ

)2

L8/3

∫ 1

0

dξ C2
n(ξL) ξ

5/3

]−3/5

(33)

integrated turbulence: m0 =
∫ 1

0

dξ C2
n(ξL), (34)

where λ is the wavelength and L is the path length. For the purpose of this study, λ = 1.0×10−6m and L =
5.0×104m were used in calculating the atmospheric parameters. Scatter plots of the atmospheric parameters
computed for the reconstructed profiles versus the atmospheric parameters for the original profiles are shown
in Figure 6(a). These plots show that the key atmospheric parameters values arising from the reconstructed
profiles are indeed highly correlated with the atmospheric parameters of the original profiles. Figure 6(b)
shows cumulative distribution curves for the relative error associated with each atmospheric parameter
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Figure 4: Optical configuration for the proposed profiling apparatus. Two apertures are separated in the x̂
direction by the aperture diameter D. Three down range point sources are separated in the x̂ direction by
distances D and 2D. An equivalent symmetric system is also located down range.

estimated from the reconstructed profiles. The relative error performance for r0 and θ0 is approximately the
same, with all relative errors less than 2%. There are slightly larger errors associated with determining R
and m0 from the reconstructed profiles, but both have errors near 3%.

3.3 Reconstructor Noise Gain

The analysis in Subsection 3.2 illustrates that the proposed profiling apparatus is capable of accurately
reconstructing C2

n values over the propagation path. Consequently, estimates of key atmospheric parameters
are also accurately obtained. In this subsection, we address the precision of the profile reconstructor and
the impact on estimates of atmospheric parameters.

Each of the expressions in Eq. (32) through Eq. (34) can be rewritten as a weighted integral of C2
n over

the propagation path to define a generalized parameter value p given by:

p =
f(λ, L)

∫ 1

0

dξ C2
n(ξL)wp(ξ)

f(λ, L)

=
∫ 1

0

dξ C2
n(ξL) wp(ξ), (35)

where f(λ, L) is an arbitrary function for each parameter and wp(ξ) is a weighting function normalized such
that

∫ 1

0
dξ wp(ξ) = 1. For the partitioned turbulence profile given in Eq. (22), Eq. (35) can be written as:

p =
∫ 1

0

dξ
N∑

i=1

C2
ni rect

(
ξ − ξi
li

)
wp(ξ)
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Figure 5: (a) Sampling of reconstructor performance for a bi-directional system employing two apertures
and three point sources on each end of the propagation path. (b) Relative error in C2

n estimation for an
ensemble of 1000 random turbulence profiles with 10 partitions across the path.
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Figure 6: (a) Atmospheric parameters for each reconstructed profile versus atmospheric parameters for each
of 1000 random turbulence profiles with 10 partitions across the propagation path. (b) Cumulative distri-
bution functions of the relative error in atmospheric parameters calculated from reconstructed turbulence
profiles.

14



p =
N∑

i=1

C2
ni

∫ 1

0

dξ rect
(
ξ − ξi
li

)
wp(ξ)

p =
N∑

i=1

C2
ni

∫ ξi+li/2

ξi−li/2

dξ wp(ξ)

p =
N∑

i=1

C2
ni Ai, (36)

where Ai is integral of the parameter weighting function over the ith path partition:

Ai =
∫ ξi+li/2

ξi−li/2

dξ wp(ξ). (37)

Thus, the generalized parameter value may be related to a vector c of C2
n values according to:

p = A c, (38)

where A = [A1 A2 . . . AN ].

To address the precision of the profile reconstructor and the impact of this precision on the estimate
p̂ of the atmospheric parameter p, we first consider that p̂ = A ĉ. From Eq. (27), it therefore holds that
p̂ = A H m. Now, from this relationship, it follows that for a small change in m, designated dm:

dp̂ = A H dm. (39)

Given this relationship, we may then consider the mean-squared value of dp̂, designated here as σ2
p̂:

σ2
p̂ =

〈
dp̂2
〉

=
〈
(A H dm)(A H dm)T

〉
= A H

〈
dm dmT

〉
HT AT . (40)

If we regard dm as a noise term in the measurement vector, then it is reasonable to assume the elements
of dm are mutually uncorrelated. Furthermore, if each element has an equal variance σ2

m, then we may say
that: 〈

dm dmT
〉
= σ2

m I (41)

Using this form for the covariance matrix of m, and employing the fact that H = (PT P)−1PT , it follows
that:

σ2
p̂ = A H σ2

m I HT AT

= A (PT P)−1PT P(PT P)−1AT σ2
m

=
[
A (PT P)−1AT

]
σ2

m (42)

For a measurement value m, we can use the relationship in Eq. (42) to write:

σ2
p̂

p2
=

[
A (PT P)−1AT

] m2

p2
σ2

m

m2

σp̂

p
=

[√
A (PTP)−1AT

(
m

p

)]
σm

m
(43)

The quantity within the square braces of Eq. (43) represents the noise gain for the parameter estimator
based on DDTV measurements. The precision in the parameter estimate relative to the parameter value is
the product of this noise gain and the relative noise-induced error in the measurement.
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Recall that m and p are appropriately-weighting integrals of C2
n over the propagation path. These

integrals may be substituted into Eq. (43) to yield:

σp̂

p
=



√

A (PTP)−1AT



∫ 1

0

dξ C2
n(ξL)wm(ξ)∫ 1

0

dξ C2
n(ξL) wp(ξ)




 σm

m
(44)

We may consider a simple, but non-trivial case of uniform C2
n over the propagation path. In this case, we

may deduce that:

σp̂

p
=



√

A (PT P)−1AT



C2

n

∫ 1

0

dξ wm(ξ)

C2
n

∫ 1

0

dξ wp(ξ)




 σm

m

=
√

A (PT P)−1AT
σm

m
, (45)

where the second step follows from the fact that the weighting functions wm and wp are normalized. In this
case, we may define a noise gain Gp for the parameter p that is related to the matrix A for the parameter
and the matrix P for the reconstructor as:

Gp =
√

A (PT P)−1AT . (46)

The noise gain Gp was calculated according to Eq. (46) for each of the atmospheric parameters using
the profile reconstructor discussed in Subsection 3.2. These values of Gp are shown in Table 3. These
results illustrate that the noise gain for estimating atmospheric parameters using the profile reconstructor
is quite low. For instance, with a measurement relative error of 10%, the relative error in the estimate is
approximately 1%.

parameter value relates to Gp

8.052
(

2π
λ

)−7/6
L−11/6 R Rytov parameter 0.1101

6.305
(

2π
λ

)−2
L−1 r0

−5/3 Fried parameter 0.1538
0.916

(
2π
λ

)−2
L−8/3 θ0

−5/3 isoplanatic angle 0.1538
m0 integrated turbulence 0.1163

Table 3: Noise gain for estimating each atmospheric parameter using the apparatus and reconstructor detailed
in Subsection 3.2.

4 CONCLUSION

Irradiance-based techniques for C2
n profiling using integrated-path measurements are limited by saturation

effects and the lack of sound theoretical constructs for analysis. To avoid these difficulties, a technique
for profiling C2

n values along a propagation path using differential-tilt measurements has been proposed.
This technique makes use of relatively simple instrumentation to obtain an ensemble of tilt data. The
tilt data is then processed to estimate quantities referred to as the difference of differential-tilt variance or
DDTV. The DDTV quantities are unaffected by gimbal motion and additive noise sources. Furthermore,
the DDTV quantities each represent a particular weighted integral of C2

n over the propagation path. Using
the theoretical weighting function for the DDTV measurements, a reconstructor matrix can be derived to
obtain C2

n estimates over the propagation path.
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A system consisting of 2 receive apertures and 3 point sources on each end of the path was considered
in this analysis. With this configuration, there are a total of 90 DDTV measurements (45 from each end)
with unique path-weighting functions which can be computed from the tilt data. The resulting profile
reconstructor was tested against an ensemble of 1000 random profiles. Computed moments from each profile
were used as input to the reconstructor with the output being a vector of C2

n values. This analysis indicates
that the mean relative error in the turbulence strength estimate is approximately 5%. When key atmospheric
parameters are computed from the reconstructed profiles, the relative error in the Fried parameter and
isoplanatic angle is less than 2%. The relative error in the Rytov parameter and mean turbulence strength
is approximately 3%. The noise gain for estimating any of these parameters is less than 0.2, indicating that
the precision of the estimator is not adversely affected by residual noise contributions.
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